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Cellular Automata

[Ulam and von Neumann, 1950] for self-reproduction.
Here: finite 1-dimensional binary CA:

Definition

A CA is a finite array of cells. Each cell is a FSM C = (F2, f)
where F2 is the set of states and f a mapping f : F3

2 ! F2.
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Later, f will be a mapping f : F4
2 ! F2 or f : F5

2 ! F2.
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Representation Forms for CA

(xt
i�1x

t
ix

t
i+1) 111 110 101 100 011 010 001 000

xt+1
i 0 1 0 1 1 0 1 0

Wolfram Numbering: Bin(90)= 01011010, truth table of f
Hexadecimal: 5A, truth table of f
Boolean function: xi�1XORxi+1

ANF: xi�1 � xi+1 or 1 + 3 (with algebraic degree 1)

Representations generalize to rules of wider radius

Definition (ANF)

f : Fn

2 ! F2 is uniquely represented by a n-variable binary
polynomial: f(x) =

L
u2Fn

2
au(

Q
n

i=1 x
ui
i
).

The algebraic degree of f is its ANF degree.
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Walsh Transform & Randomness

Walsh transform bf of f is defined over Fn

2 by

bf(u) =
X

x2Fn
2

(�1)f(x)�u·x

Used to test PRG.

[Yuen, 1977]: a truly random sequence has an asymptotically
flat Walsh power spectrum.

Property: f̂(0) = E[f(x)] = 2n�1; tests if f balanced.
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Correlation Testing

In crypto: study correlation-immunity (CI) of Boolean
functions.

[Xiao and Massey, 1988] link together CI and WT.

Theorem

A function f : Fn

2 ! F2 is k-correlation-immune (CI(k)) i↵

f̂(u) = 0 8u = (u0, · · · , un�1) 6= 0 with wH(u)  k.

WT computes correlations between inputs and outputs.
Great interest: quasi-linear time computation

Definition

CI(k) + balanced = k-resilient (R(k))
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Boolean Functions

Definition (equivalent BF)

f and g Boolean functions with n variables are equivalent i↵

f(x) = g ((x ·A)� a)�
�
x ·BT

�
� b, 8x 2 Fn

2 (1)

A is a non-singular binary n⇥ n matrix, b 2 F2, a,B 2 Fn

2 .

Theorem (Siegenthaler bound)

For a R(k) BF with n variables (0  k < n� 1), there is an

upper bound for its algebraic degree d:
dn� k � 1 if k<n� 1 and d = 1 if k = n� 1.
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Radius 1 CA Rules

Siegenthaler’s bound with n = 3 variables, k = 1-resiliency
provides an algebraic degree d  n� k � 1 = 1.
Only linear functions are 1-resilient.

Theorem

There is no non-linear radius 1 CA rule which is resilient.

The same is obtained through rules exploration via
WT [Martin, 2008].

What are the other ways to get randomness with CAs?

I Switch to non-uniform hybrid CA

I Increase the neighborhood for uniform CA
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Linear Hybrid CA

HCA combine di↵erent rules.
LHCA combine linear rules (e.g. 90 and 150) with null
boundary conditions.
LHCA are specified by the rule vector that tells which cells use
rule 90 and which use rule 150. M = [d0, d1, . . . , dN�1] s.t.

di =

⇢
0 if cell i uses rule 90
1 if cell i uses rule 150

New dynamics: xt+1
i

=fi(xti�1x
t

i
xt
i+1)=xt

i�1+dixti+xt
i+1 mod 2
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LHCA 90/150

In xt+1
i

= fi(xti�1x
t

i
xt
i+1) = xt

i�1 + dixti + xt
i+1, since fi is linear

) F its global function is also linear (endomorphism of FN

2 ).
There is a HCA matrix A s.t. xt+1 = F (xt) = A · xt
(it plays the same role as an LFSR transition matrix)

A =

0

BBBB@

d0 1 0 ··· ··· 0 0

1 d1 1
. . . 0

0 1 d2

. . .
. . .

...
... 1 dN�2 1
0 0 ··· ··· 0 1 dN�1

1

CCCCA

� denotes the characteristic polynomial, or HCA polynomial
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Results on LHCA [Cattell and Muzio, 1998]

Theorem

Let p 2 F2[x] of degree n. Then p is a HCA polynomial i↵ for some

solution q for y of the congruence

y2 + (x2 + x)p0y + 1 ⌘ 0 mod p (2)

Euclid’s algorithm on p and q results in n degree 1 quotients.

Theorem

If p 2 F2[x] irreducible of degree n, then eq. (2) has exactly two

solutions, both of which result in n deg. 1 quotients.

d�0 coefs in the quotients give the di values. This only gives necessary
conditions for HCA polynomials.

Corollary

If p 2 F2[x] irreducible, then p has exactly two HCA realizations with

one being the reversal of the other.
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Similarity Transform Between LHCA and LFSR

[Cattell and Muzio, 1998] provide a similarity tranform which
provides explicit mappings between the states of a LHCA and
the states of a LFSR.

Thus, we inherit of the work done on LFSR for LHCA, in
particular for generating PRS with LFSR.

But LHCA sequences are predictable (since they are linear).
Massey-Berlekamp’s algorithm is able to recover the
characteristic polynomial of a LFSR from the binary sequence.
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Cellular Programming Approach

[Sipper and Tomassini, 1996]: genetic algorithm for selecting
the rules used in a radius 1 HCA.
Their fitness function depends upon Koza’s entropy

Eh = �
k
hX

j=1

phj log2 phj

I k = number of possible values per sequence position

I h a subsequence length

I phj is a measured probability of occurrence of a sequence
hj in a PRS

Best rules: 90, 105, 150 and 165 (all linear).
Tests: �2, serial correlation coe�cient, entropy and MC
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HCA With More Neighbors, Genetic Algorithm

I [Seredynski et al., 2004]: generalization of the cellular
programming approach to 5-variable updating functions.

I Use of both 3 and 5-variable rules in HCA.

I Best rules: 30, 86, 101 and 869020563, 1047380370,
1436194405, 1436965290, 1705400746,
1815843780, 2084275140 and 2592765285.

I Tests: statistical tests required by the FIPS 140-2 standard
and the Marsaglia tests.
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4-Variable Local Functions

There are 216 = 65536 4-variable CA rules.

A BF in 4 variables is represented by an integer {0, ..., 65535}.

200 non-linear R(1) quadratic functions (Siegenthaler bound).

Divided into 8 equivalence classes by [Lacharme et al., 2008].
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4-Variable 1-Resilient Rules

f ANF card.
34680 12 + 3 + 4 12
6120 4 + 12 + 13 + 23 8
7140 2 + 4 + 12 + 13 48
11730 1 + 3 + 4 + 12 24
34740 2 + 3 + 4 + 12 + 42 48
39318 1 + 2 + 3 + 4 + 34 12
7128 3 + 4 + 12 + 31 + 42 + 43 24
11220 2 + 3 + 12 + 31 + 42 24

200

Can we find more with 5-variable local functions ?
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Questions We Address

I Which are the rule transforms preserving resiliency?

I Which are the 1-resilient radius 2 CA rules?

I Which are the rules preserving resiliency upon iteration?

Just R(1) since there are only 8 R(2)-BF in 5-variable.
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Theoretical Results

Assumptions:

I f : F2m+1
2 ! F2, local function of a CA

I 8t 2 N, f t denotes f ’s iterate

Results:

I f t

R
is 1-resilient i↵ f t is 1-resilient.

I f t

N
is 1-resilient i↵ f t is 1-resilient.

where:

– fN negation of the truth table

– fR reflection of the truth table (mirror image)
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5 variable Boolean Functions

Reed-Muller codes RM(1, 5)

226 Cosets of RM(1, 5)

48 equivalence classes

WT
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1-Resilient, Radius 2-CA Rules

From [Braeken et al., 2008], we know the representatives of BF
which are 1-resilient (skipping linear):

Representative NCI(1) NR(1)

12 4 840 4 120
123 16 640 11 520

123+14 216 000 133 984
123+14+25 69 120 24 960
123+145+23 1 029 120 537 600

123+145+23+24+35 233 472 96 960

Table: Number of functions satisfying CI(1) and R(1).

Problem: How can we find the BF in the equivalence class?
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R(1), Radius 2-CA Rules

I Representative R(x1, x2, x3, x4, x5)= coset leader.

I Consider elements of the form
R(x1, x2, x3, x4, x5)�(ax1)�(bx2)�(cx3)�(dx4)�(ex5)�h
for a, b, c, d, e, h Boolean, spanning the 26 elements of the
coset.

I Compute the WT on all elements of the coset

I Select balanced BF

I Select among the balanced BF those with CI(1)
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R(1)-BF on 5 Variables

Coset 1-resilient functions

12 3c3c3cc3 3c3cc33c 3cc33c3c 3cc3c3c3 5a5a5aa5 5a5aa55a

5aa55a5a 5aa5a5a5 66666699 66669966 66996666 66999999

69696996 69699669 69966969 69969696 96696969 96699696

96966996 96969669 99666666 99669999 99996699 99999966

a55a5a5a a55aa5a5 a5a55aa5 a5a5a55a c33c3c3c c33cc3c3

c3c33cc3 c3c3c33c

123 66696996 66699669 66966969 66969696 69666699 69669966

69996666 69999999 96666666 96669999 96996699 96999966

99696969 99699696 99966996 99969669

123+14 66695aa5 6669a55a 66965a5a 6696a5a5 696655aa 6966aa55

969955aa 9699aa55 99695a5a 9969a5a5 99965aa5 9996a55a

123+14+25 ?
123+145+23 1eb4663c 1eb499c3 e14b663c e14b99c3

123+145+23+24+35 ?
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Testing the Iterates

Extension to BF on 9 variables (2 iterations of the local f).

Select from previous rules, those preserving R(1).

(iteration does not preserve resiliency)
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R(1)- Rules After 2 Iterations

Coset 12

0x3C3C3CC3 yes 0x3C3CC33C no 0x3CC33C3C no
0x3CC3C3C3 yes 0x5A5A5AA5 yes 0x5A5AA55A yes
0x5AA55A5A yes 0x5AA5A5A5 yes 0x66666699 yes
0x66669966 yes 0x66996666 yes 0x66999999 yes
0x69696996 yes 0x69699669 yes 0x69966969 yes
0x69969696 yes 0x96696969 yes 0x96699696 yes
0x96966996 yes 0x96969669 yes 0x99666666 yes
0x99669999 yes 0x99996699 yes 0x99999966 yes
0xA55A5A5A yes 0xA55AA5A5 yes 0xA5A55AA5 yes
0xA5A5A55A yes 0xC33C3C3C yes 0xC33CC3C3 no
0xC3C33CC3 no 0xC3C3C33C yes

Coset 123

0x66696996 yes 0x66699669 yes 0x66966969 yes
0x66969696 yes 0x69666699 yes 0x69669966 yes
0x69996666 yes 0x69999999 yes 0x96666666 yes
0x96669999 yes 0x96996699 yes 0x96999966 yes
0x99696969 yes 0x99699696 yes 0x99966996 yes
0x99969669 yes

Coset 123+14

0x66695AA5 yes 0x6669A55A yes 0x66965A5A yes
0x6696A5A5 yes 0x696655AA yes 0x6966AA55 yes
0x969955AA yes 0x9699AA55 yes 0x99695A5A yes
0x9969A5A5 yes 0x99965AA5 yes 0x9996A55A yes

Coset 123+145+23

0x1EB4663C no 0x1EB499C3 no 0x2D7855F0 no
0x2D78AA0F no 0x44EE3C66 no 0x44EEC399 no
0x4B1ECC69 no 0x77220FAA no 0x7722F055 no
0x88DD0FAA no 0x88DDF055 no 0xB4E13396 no
0xBB113C66 no 0xBB11C399 no 0xD28755F0 no
0xD287AA0F no 0xE14B663C no 0xE14B99C3 no
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PRNG Testing

Two tests :

1. Randomness preservation:
Is the randomness quality of a PRS preserved through CA
iteration?

2. Random Number Generation [Shackleford et al., 2002]:
Is the CA able to generate a good PRS?

Evaluations made with the Diehard test suite.
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Diehard

by G. Marsaglia - Florida State University
recommended by CSRC/CSD of NIST

U.S. National Institute of Standards and Technology

Many di↵erent tests to measure the quality of the randomness

Based on Kolmogorov-Smirnov normality test

Provide indicators which should be uniformly distributed on
[0, 1] if the input sequence is made of truly independents bits.
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Randomness preservation

/dev/random

(bi)i�0 80MB long

(b0
i
) with b0

i
= f(b5i, b5i+1, b5i+2, b5i+3, b5i+4) 16MB long

Diehard tests

extraction

derivation

3
0
t
im

e
s
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Randomness preservation - results

0.025 0.975
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

p-value
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Random Number Generation

ring �64 or 65 with one cell up

(ri)0i2.106 with ri = (bi
j
)j2[0,�]

(ei) with ei = bi/�2⇤(j%32) (oi) with oi = bi/�2⇤(j%32)+1

Diehard tests

2 millions of iterations

extraction
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Random Number Generation

0.025 0.975

even 64

odd 64

even 65

odd 65

p-value

p-values distribution for the ring CA with rule 0x3C3C3CC3.
p-values between the two lines (at 0.025 and 0.975) mean that
the corresponding statistical test was successful, which is not
the case for even 64 and odd 64 (all the p-values are almost
zero) and barely for even 65 and odd 65.
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Random Number Generation

0.025 0.975

even 64

odd 64

even 65

odd 65

p-value

Distribution of the p-values for the ring CA with rule
0x69999999. p-values between the two lines (at 0.025 and 0.975)
mean that the corresponding statistical test was successful.
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Further work - Conclusion

I Approach for getting good BF for PRG

I Complete the search of radius-2 rules

I Classify all CA rules up to radius 2

I Provide a tool to find good BF in many variables

I Thank you
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