Robust Fitting on Poorly Sampled Data for Surface Light Field Rendering and Image Relighting

Kenneth Vanhoey
KVanhoey@unistra.fr

Basile Sauvage
Sauvage@unistra.fr

Olivier Genevaux
Genevaux@unistra.fr

Frédéric Larue
FLarue@unistra.fr

Jean-Michel Dischler
Dischler@unistra.fr

Journées GDR ISIS - Thème D - AC3D
« De l’acquisition à la compression des objets 3D »
23 et 24 Mai 2013
Porquerolles
Introduction

Robust Reconstruction

Statistical Robustness Analysis

Results and conclusion

Outline

1. Introduction

2. Robust Reconstruction Method

3. Statistical Robustness Analysis

4. Results and conclusion
Introduction
3D data acquisition with aspect

Definition
Recreate a 3D model of a real object through physical acquisition

- Shape (surface)
- Aspect (surface color)

Examples: geometry

![Example image of 3D objects and cubes](image-url)
3D DATA ACQUISITION WITH ASPECT

Definition
Recreate a 3D model of a real object through physical acquisition

- Shape (surface)
- Aspect (surface color)

Examples: Diffuse Color

![Image of a 3D model with a wooden dragon and dice.]
3D data acquisition with aspect

Definition

Recreate a 3D model of a real object through physical acquisition

- Shape (surface)
- Aspect (surface color)

Examples: vs. directional color
APPLICATIONS

FILING (HERITAGE)
- Buildings
- Historical objects

OFF-SITE STUDY
- Experts
- Amateurs (art gallery)

VIRTUAL ENVIRONMENTS
- Cinema
- Gaming

DIFFERENT NEEDS
- Shape
- Aspect
Physical acquisition

1. Picture projection on mesh
2. Aspect as a light field
ACQUISITION AND RECONSTRUCTION PROCESS

PHYSICAL ACQUISITION

ALGORITHMS

1 Picture projection on mesh
2 Aspect as a light field
Physical Constraints

- Light-weight, transportable devices: mobile scanner and hand-held camera
- Constrained space: fixed objects, obstacles, ...

Global Input

- incomplete coverage
- unstructured coverage

LF Representation

Radiance function per surface unit.

Local Input

- poor sampling distribution
- sparse
- noisy
Input: \(K \) color samples

\[\{(\omega_i, v_i)\} \]

\(\omega_i \) is a local observation direction;
\(v_i \) is a color.

Reconstruction algorithm

\[f(\omega_i) \approx v_i \]

Output: light field function

\[f(\omega) = \sum c_j \phi_j(\omega) \]

where the coefficients \(c_j \) are to be estimated.
Contributions

1. Simple robust reconstruction method

2. Analysis / comparison tool

Context: 3D data acquisition
Acquisition and reconstruction process
Challenges and framework

Introduction
Robust Reconstruction
Statistical Robustness Analysis
Results and conclusion
Robust Reconstruction Method
EXAMPLES
Least Squares on square error

$$\text{ArgMin}_C (E_{MSE})$$

where $$E_{MSE} = \sum_i \|f(\omega_i) - v_i\|^2$$

Fitting

Which solution to choose?

Problems

- Under-constriction
- Non-covered parts
- Perturbations (noise)

Consequences

- Several solutions
- Unexpected solutions
- Unstable result
Least Squares on Square Error

\[\text{ArgMin}_C(E_{MSE}) \]

where \(E_{MSE} = \sum_i \|f(\omega_i) - \nu_i\|^2 \)

Problems

- Under-construction
- Non-covered parts
- Perturbations (noise)

Consequences

- Several solutions
- Unexpected solutions
- Unstable result
Least Squares on square error

\[\text{ArgMin}_C (E_{MSE}) \]

where \(E_{MSE} = \sum_i \|f(\omega_i) - v_i\|^2 \)

Problems

- Under-constriction
- Non-covered parts
- Perturbations (noise)

Consequences

- Several solutions
- Unexpected solutions
- Unstable result
Least Squares on Square Error

\[
\text{ArgMin}_C(E_{MSE})
\]

where \[E_{MSE} = \sum_i \|f(\omega_i) - v_i\|^2\]

Problems

- Under-constriction
- Non-covered parts
- Perturbations (noise)

Generic and Simple Method for:

- well constrained
- penalizing unexpected colors
- increasing stability w.r.t. perturbations

Consequences

- Several solutions
- Unexpected solutions
- Unstable result
Minimization of weighted energies

\[\text{ArgMin}_C((1 - \lambda)E_{MSE} + \lambda E_{stab}) \]

where \(E_{MSE} = \sum_i \| f(\omega_i) - v_i \|^2 \)

Generic and simple method for:
- well constrained
- penalizing unexpected colors
- increasing stability w.r.t. perturbations

Problems
- Under-constriction
- Non-covered parts
- Perturbations (noise)

Consequences
- Several solutions
- Unexpected solutions
- Unstable result
Minimization of weighted energies

\[\text{ArgMin}_C((1 - \lambda)E_{MSE} + \lambda E_{stab}) \]

\(E_0 : \text{function energy} \)

\[E_{stab} = E_0 = \int\int_\Omega ||f||^2 \]

Defined in [LLW06] for:
- reducing compression noise
- Spherical Harmonics

Does not suit our purpose

Pulls function values towards 0.
Minimization of Weighted Energies

\[\text{ArgMin}_C((1 - \lambda)E_{\text{MSE}} + \lambda E_{\text{stab}}) \]

\(E_2 : \) Thin-Plate Energy

\[E_{\text{stab}} = E_2 = \int \int_{\Omega} (\Delta f)^2 \]

Defined in [WAA+00] for:

- local under-constriction problem
- Lumispheres

Efficient, but . . .

- Generates expected colors in most cases
- Does not penalize extrapolations
Minimization of weighted energies

\[\text{ArgMin}_C ((1 - \lambda)E_{MSE} + \lambda E_{stab}) \]

\[E_{stab} = E_1 = \int\int_{\Omega} \| \nabla f \|^2 \]

Defined for:
- limiting high frequency variations and extrapolations

Efficient, and . . .
- Generates expected colors
- Disallows extrapolations
- Tends towards constant value
Statistical Robustness Analysis
Precision measure

- Visual

\[E_{MSE} = \sum_i \| f(\omega_i) - v_i \|^2 \]

Stability measure

A stable fitting algorithm is one that is not sensitive to difficult conditions, e.g.:

- poor sampling conditions (bad coverage, sparsity)
- perturbations (input data noise, missing observation directions)
Precision measure

- Visual
- \(E_{MSE} = \sum_i \| f(\omega_i) - v_i \|^2 \)

Stability measure

A stable fitting algorithm is one that is not sensitive to difficult conditions, e.g.:

- poor sampling conditions (bad coverage, sparsity)
- perturbations (input data noise, missing observation directions)
Precision measure

- Visual
- \(E_{MSE} = \sum_i \| f(\omega_i) - v_i \|^2 \)

Stability measure

A stable fitting algorithm is one that is not sensitive to difficult conditions, e.g.:

- poor sampling conditions (bad coverage, sparsity)
- perturbations (input data noise, missing observation directions)
Measures

- Precision error (bias)
- Stability error (variance)
- Expected prediction error \hat{E}

Expected prediction error

![Graph showing the relationship between expected prediction error and input samples for different values of λ. The graph illustrates the trade-off between precision and stability.]
Computation & interpretation

Example

Tool

- Analyzing stabilization behavior w.r.t. input data, function basis, basis size, ...
- Derive optimal λ
- Compare energies
Robust Fitting on Poorly Sampled Data for IBR
NEED FOR STABILIZATION

(c) ULS

(d) CLS
Energy Comparison

Comparison results

All energies generate stable fittings.

- E_0 generates unwanted colors
- E_1 generates expected colors
- E_2 generates expected colors in some conditions

Robustness of E_1

- Function basis
- Color space
- Sparsity
- Basis size
ENERGY COMPARISON

Comparison results

- All energies generate stable fittings.
 - E_0 generates unwanted colors
 - E_1 generates expected colors
 - E_2 generates expected colors in some conditions

Robustness of E_1

- Function basis
- Color space
- Sparsity
- Basis size
λ CHOICE

Choose λ
- Small enough for precision
- High enough for stability

For our setting
- \(\lambda \in [0.01, 0.05] \) for \(E_0 \) and \(E_1 \)
- \(\lambda \in [0.001, 0.005] \) for \(E_2 \)

Setting-dependent
Run bootstrap to derive your own optimal \(\lambda \)
CONCLUSION

Robust reconstruction method for surface light fields and image-based relighting applications
- difficult conditions (sparsity, distribution, noise, basis type and size)
- compromise between precision and stability

Statistical tool
- derive an optimal precision/stability compromise
- assess results

FUTURE WORK

Reliable data for post-processing
- simplification
- level-of-detail visualization
- interpolation (for mip-mapping)

Issue
- holes: how to fill them?
Merci

Questions?

Où trouver l’article

- early view de *Computer Graphics Forum*
- via http://dpt-info.u-strasbg.fr/~kvanhoey

