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True Pseudo-Random Numbers vs Pseudo-
Random Numbers and Chaotic Numbers

A T r Ra&ndom Numbers are produced generally by physical devices
such as presented in the next slide.

However they are not fic ont r o that anedne cone cannot
synchronize two devices generating Random Numbers. Therefore
they are not useful for cryptography for which the coding and
decoding processes are linked by keys (either secret or public).

Pseudo-Random Numbers (as those generated by function Rand in
your computer) depend on an initial seed (for example the time in
microsecond of the internal clock of your computer used as a
guess). Using the same seed gives the same sequence of Pseudo
Random Numbers.

Chaotic Pseudo-Random Numbers are built from Chaotic Numbers,
they are equipped with more astute parameters than only one initial
seed. They are more fitted for cryptography based chaos. Those
parameters can be used as keys.




Example of physical random number generator

QUANTIS is a physical HOME > RANDOM NUMBER GENERATION > QUANTIS RANDOM NUMBER GENERATOR
random number generator KR '
exploiting an elementary
guantum optics process.
One needs to use Quantis
In connection with a
computer or server.

The product exists in three

versions compatible with Quantis Random Number Generator

most platforms TRUE RANDOM NUMBER GENERATOR EXPLOITING QUANTUM PHYSICS

A USB device 7 random stream of 4Mbits/sec
A PCI Express (PCle) board i random stream of 4Mbits/sec
A PCl board 7 random stream of 4Mbits/sec and 16Mbits/sec




Pseudo-Random Numbers
Generators (PRNG)

They are many kinds of generators:

- Linear Congruential generator

X, =(ax, +c) mod m
- Blum Blum Shub (B.B.S.)
Xn+1:xﬁ mOd M

- Mersenne Twister




The Blum Blum Shub PRNG

Blum Blum Shub (B.B.S.) is a Pseudo Random Number
Generator proposed in 1986 by Lenore Blum, Manuel
Blum and Michael Shub.

It takes the form:

X..=x modM where M =p(Q is the product of

two large primes.

At each step of the algorithm the output is derived from X_ .,

The output is commonly either the bit parity of X, or one or more of
least significant bits of X_,




The Blum Blum Shub PRNG: conditions

1- The seed X, should be an integer that is co-prime
with M ,i.e. p and g are not factors of X, , and

not O or 1.
2- the two primes p and g should both be congruent

to 3 (mod 4) and gcd(/ (p-1),/(g-1) should be
small,

where / is the Euler function which is, in this case, the
number of integers K intherange 1¢ k dn for
which the greater common divisor of k is gcd(n,k F1




The dawn of chaotic
dynamical systems

(from early beginning to nowadays)




The dawn of chaotic iterations (l)

Henri Poincaré
(1854-1912)

Pierre Fatou
1878-1929

The study of nonlinear dynamics is relatively recent
with respect to the long historical development of the
early mathematics since the Egyptian and the Greek
civilizations. The beginning of this study can be
traced to the phenomenal work of Henri Poincaré.
The Poincaré map being an essential tool linking
differential equations and mappings.

Concerning iterations theory,

one has to include in this field

of research the pioneer works

of Gaston Julia and Pierre Fatou
related to one-dimensional maps
with a complex variable, near

a century ago.

Gaston Julia
1893-1978




The dawn of chaotic iterations (ll)

In France Igor Gumosky and Christian Mira began
their mathematical researches in 1958. They
produced a considerable work on the matter (theory
of boxes in the boxes for example). Among their
discoveries one can emphasize on their family of
attractors from an aesthetic point of view (of course
Christian Mira it Is only a microscopic point of view of what they
haveproduced)

The Gumowski-Mira attractor:

(x, )+by, X
{”H S (%, )+ by with  f(x)=ax+2(1—a) i

3 , |, 2
H+1 f(xiHl) 1 + X

IS sensitive to slight changes of parameters a and b




The dawn of chaotic iterations (llI)

a=-0.918,b=0.9




The dawn of chaotic iterations (1V)

In Japan the Ha y a s3cthodl éwith disciples like lkeda, Ueda and Kawakami)
In the same period, were motivated by applications to electric and electronic
circuits. Mappings were used as models of behavior of electric circuits.

The Ikeda attractor (1980):

{xm =I]+u(x, cost —y, sint, )
has a chaotic attractor when u 2 0.6

y,., =u(x, sint, +y cost )

with t, =04-
u=238.6

u=28,9




The dawn of chaotic iterations (V)

In the last 50 years long history of chaotic iterations leading to the new
concept of strange attractors, and corresponding chaotic differential
systems, one can mention few important dates:
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Lorenz attractor Rossler attractor Hénon map
1963 1976 1976

Belykh map l Chua attractor 1983 Chen attractor 1999




Two-Dimensional discrete dynamical systems: Hénon
mapping (1976)

Simplest model of Poincaré map of Lorenz equation.
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Fractal structure of the Hénon attractor
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Fractal structure of the Hénon attractor

Structure of Cantor set y

+ Sensitivity to initial 01855 o < e
conditions
= strange attractor

Sensitivity to initial
conditions is assessed by
Lyapunov exponents .|
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Chaotic Pseudo-Random Number Generators

Mastering high quality
randomness via chaos
theory




One-Dimensional discrete dynamical systems: Logistic
and Tent Map

Maps of some interval included in the real line f:R- R

f:J0,]- [0.]

Logistic map

fr(x)= X(1 -x)
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Associated dynamical system
Xne1 = X (1 -%)

f:l-1,1 -[ 4.9

symmetric tent map

f(x)=1-2/X

Associated dynamical system

Al

Xopp =1 -2




Symmetric tent map

f:-1,1 -] 1.1 )
f(x)=1 -a %

a=2
Invariant measure :
= Lebesgue measure

However numerical instability
leads to the collapse of

solutions to the unstable
fixed point x =-1 10

I— symmetric tent map I

G. Yuan & J. A. Yorke, Collapsing of chaos in one dimensional maps,
Physica D, 136,18-30 (2000).




Density of iterated values of the Logistic map
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The route from chaos to pseudo-randomness via ultra-
weak coupling, and chaotic or mixing undersampling
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Step 1: Ultra-weak coupling of 1-D maps

f(x)=1-2|%  *w1=1-2x

ex,,=(1-30 ) £ (% )20+ (3x )+ O
1, =0, F3 % )- {1230) £ ( x+)"
¢, =0, Y %) 20 # (-x ) 3( 1# 3%
TX:+1=04 f%\( *4) ?10 #4( 72 ) + LOJ'41: (19‘

Ultra-weak coupling means
7 14
e °© 10 for floating points or € °© 10 for double precision numbers

Ultra-weak coupling is efficient in order to restore
numerically the chaotic properties of chaotic
mappings, avoiding any numerical collapse




Criteria to CPRNG
robustness

System features

|

Signal features

| | |

Phase space | | Attractor in | [Topologic Uniform Auto- Cross- NIST
LLE . A . .
attractor phase delay| | al mixing | |distribution| |correlation| |correlation| | tests
1 2 3 4 5 6 7 8

Table 1. Consolidated criteria of robust CPRNG.

No. Criteria Succeed characteristic

1 Largest Lyapunov exponent Positive

2 Attractor in phase space Dense everywhere

3 Attractor in phase delay Dense everywhere

4 Topological mixing Complex and fast

5 Uniform distribution Decreasing of distribution error
with increasing generated points

6 Auto-correlation Mear zero

7 Cross-correlation Mear zero

8 MIST tests

Successfully passed

The main criteria for CPRNG robustness




Approximate distribution of iterates

We define several function errors, which assess the between uniform
distribution and discrete repartition of iterates in boxes.

In the case of 1-D mapping, one can assess, the repartition of the iterates on the
Interval, but not only: the space of delay must also be considered.

."." EL‘H"'r-:ii:i-::-la"rilLvr{I} = ||Ral"r-:|i:ir1‘a"ril¢:r{:r} - J‘”*r-'l {18,]
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E3 Ngie Niger (T) = [[PNgc Ny (2) — UL, (19)
Eoo Ngine . Niter (T) = [[PNgioe Nigore (2) — U[Loo- (20)

Such functions depend on the number of boxes
and the number of iterates
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In the case of p-Dimensional mapping, much more

functions are needed
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First numerical results

‘Nirer El U\rdis-:‘ ‘Nﬂer) El (deisc‘ . irer} El {jvdisc‘ ‘Niter)
2-coupled equation 3-coupled equation 4-coupled equation

10° 0.2507133¢ 0.25035328 0.2499133

106 0.079655103 0.079437105 0.080739109

107 0.025794703 0.025343302 0.025266304

108 0.0081966502 0.0079505501 0.0080771501

10° 0.003147609 0.002513533 0.002562893

10 0.0021717461 0.0007908719 0.0007970199

10™ 0.0020550967 0.00025791013 0.00025241399

10%2 8.4195287.107 7.8803383.107

3.10%2

5.0625114.107

4.5317128.107




First numerical results
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Error E| for 2-, 3- and 4-coupled symmefric tent maps. Computations are done using double
precision numbers (~ 14-15 digits), € = i€, € = 107, N.. = 10 Initial values are x, =
0.330000013113, xﬁ = 0.338756413113, xg = 0.331353442113, and xg = 0.333213583113.




Variation of the error vs the number of iterations and
the number of boxes

log (E,)




Variation of the error vs the initial values
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orrelation between variables
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10 H 0.9986-0.9990
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50 = ® 0.9994-0.9998
= O 0.9998-1.0002
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Projection of the difference between Cy x',x*) and the uniform distribution of the 4-

coupled symmetric tent map on the phase subspace (x!, x). N, = 10> x 10%, N, = 10%,
€ = 1€, €& = 1014, Computations are done using double precision numbers (~ 14-15 digits).

Initial values are x; = 0.330, x} = 0.3387564, x; = 0.50492331, and x; = 0.0.




Step 2: Chaotic and mixing under sampling

Example in 4-D: Let be three thresholds 1<T,<T,<T,<1
iInstead of using directly the coupled sequences

(Xé’xll’)é? ’Xrlwxi+1’>) (chﬁxf)ﬁ)ﬁl) an(
(Xg’xl X e ’Xn’xn+l’ )

One mixes and samples those sequences using the fourth one:

4 A A 4 using
(5 o k) ext it X0 ]T,T
N X =1¢ iff X I T,
In order to obtain: lx;? ift le'['l's,l[

(Xo Xps Xg, 7 ’Xq’Xq+1’?) which are pseudo-random.




Correlation between variables
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Error of EAC](N(IISC, NSampl,, ) for a system of 4-coupled equations when first component xl
is sampled by x* for both the threshold values 0.98 and 0.998 and the three components x?,
x2, x? are mixed and sampled by x* for the threshold values r, =098, T,=0.987T,=09%

and T, = 0.998, T, = 0.9987, T, = 0.9994. N =10 x 10, g, = i.g}, & = 10714, :\«Sampz =

iter

10° to 1019, Initial values are X, 1y, 330, x,* = = 0.3387564, x,° = 0.50492331, and x,* = 0.0.




Window of randomness versus e




